Eagle: A Team Practices Audit Framework for Agile Software
Development

Alejandro Guerrero

Rafael Fresno
aleguedia,raffrearaus@gmail.com
Universidad de Sevilla

Pablo Fernandez
Carlos Muller
Antonio Ruiz-Cortes

pablofm,cmuller,aruiz@us.es
Spain Universidad de Sevilla

An Ju
Armando Fox
an_ju,fox@berkeley.edu

University of California
Berkeley, USA

Spain

ABSTRACT

Agile/XP (Extreme Programming) software teams are expected to
follow a number of specific practices in each iteration, such as
estimating the effort ("points”) required to complete user stories,
properly using branches and pull requests to coordinate merging
multiple contributors’ code, having frequent "standups” to keep all
team members in sync, and conducting retrospectives to identify
areas of improvement for future iterations.

We combine two observations in developing a methodology and
tools to help teams monitor their performance on these practices.
On the one hand, many Agile practices are increasingly supported
by web-based tools whose "data exhaust" can provide insight into
how closely the teams are following the practices. On the other
hand, some of the practices can be expressed in terms similar to
those developed for expressing service level objectives (SLO) in
software as a service; as an example, a typical SLO for an interactive
Web site might be "over any 5-minute window, 99% of requests to
the main page must be delivered within 200ms" and, analogously, a
potential Team Practice (TP) for an Agile/XP team might be "over
any 2-week iteration, 75% of stories should be ’1-point’ stories".
Following this similarity, we adapt a system originally developed
for monitoring and visualizing service level agreement (SLA) com-
pliance to monitor selected TPs for Agile/XP software teams. Specif-
ically, the system consumes and analyzes the data exhaust from
widely-used tools such as GitHub and Pivotal Tracker and provides
team(s) and coach(es) a "dashboard" summarizing the teams’ adher-
ence to various practices. As a qualitative initial investigation of its
usefulness, we deployed it to twenty student teams in a four-sprint
software engineering project course. We find an improvement of the
adherence to team practice and a positive students’ self-evaluations
of their team practices when using the tool, compared to previous
experiences using an Agile/XP methodology.

The demo video is located at https://youtu.be/Ad4xwJMEQh9c and
a landing page with a live demo at https://isa-group.github.io/2019-
05-eagle-demo/.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE 19, August 26-30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5572-8/19/08...$15.00
https://doi.org/10.1145/3338906.3341181

CCS CONCEPTS

« Software and its engineering — Agile software develop-
ment; - Social and professional topics — Project manage-
ment techniques.

KEYWORDS

team practice, agile, team dashboard, team practice agreement

ACM Reference Format:

Alejandro Guerrero, Rafael Fresno, Pablo Fernandez, Carlos Muller, Antonio
Ruiz-Cortes, An Ju, and Armando Fox. 2019. Eagle: A Team Practices Audit
Framework for Agile Software Development. In Proceedings of the 27th
ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE ’19), August 26-30, 2019,
Tallinn, Estonia. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3338906.3341181

1 INTRODUCTION

As Agile principles are becoming a prominent philosophy amongst
the software industry, a number of project-planning management
tools (such as GitHub ! and Pivotal Tracker ?) are becoming the
common rule to coordinate teams in the software development pro-
cess. However, in spite there are well established metrics and graph
in the typical agile processes such as the completed story count or
the sprint burndown in SCRUM, there are a wide number of poten-
tial team practices (TP) that could improve the team productivity
and quality that are not measured or visualized automatically and
rely in the skills or efforts of the project manager.

In order to boost the automation and systematization of such
an improvement process, we propose a formalization of TP that
could be operationalized. Specifically, we find an important similar-
ity between a team practice structure and service level objectives
(SLO) in software as a service; as an example, a typical SLO for
an interactive Web site might be "over any 5-minute window, 99%
of requests to the main page must be delivered within 200ms" and,
analogously, a typical TP for an Agile/XP team might be "over any
2-week iteration, 75% of stories should be ’1-point’ stories". In such a
context, a set of TP could define a global agreement, that we coin
as Team Practice Agreement (TPA), in a similar way that a set of
SLOs (usually with defined compensations) conform a service level
agreement (SLA).

!https://github.com
2https://pivotaltracker.com

https://youtu.be/A4xwJMEQh9c
https://isa-group.github.io/2019-05-eagle-demo/
https://isa-group.github.io/2019-05-eagle-demo/
https://doi.org/10.1145/3338906.3341181
https://doi.org/10.1145/3338906.3341181
https://doi.org/10.1145/3338906.3341181

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Following this similarity, in this paper we present Eagle, a frame-
work that supports a systematic way to define, measure and visu-
alize team practices in software development teams following the
agile principles. Specifically, the framework provides a microservice
architecture based on the governify ecosystem[8] for SLA manage-
ment extended in two different directions: (i) a new Domain Specific
Language (DSL) and monitor for metrics related to agile project
management tools and (ii) a dynamic dashboard customized for
teams. As a result, the framework, provides a tooling ecosystem
for organizations to define their best practices to follow and track
the adherence of their teams and members in order to learn of their
pitfalls and improve over time.

2 EAGLE TOOL
2.1 Modelling TPAs

In order to define a Team Practice (TP), we require a language with
enough expressivity and easy to understand by teams so it can
be transformed from and to natural language. In previous works
[8], authors proposed the iAgree language to define SLAs joint
with a tooling ecosystems that can be extended. From a language
perspective, a wide range of SLA aspects can be included from
basic information to advanced elements such as limitations (e.g.
rates or quotas) or compensations (e.g. penalties or rewards). In this
work we have extended this language to describe Team Practice
Agreements (TPA) that are composed of different TPs. In order
to show its expressiveness we use an specific example of TP to
encourage team members to deliver 1-point stories in less than
3 days. The rationale of this TP is the assumption that 1-point
stories should be concrete enough to be quickly finished. In this
case, the natural language description could be "over any 3-days
period, 75% of assigned 1-point stories should be finished". Using the
extended iAgree to formalize this TP we can define unambiguosly
the metric and objective of the TP as long with the measuring
resolution (Figure 1 shows the excerpt > of a TPA including such a
TP). Specifically, using this extension a team practice is defined by
a combination of:

e One or more metrics, which specify how the system should
compute the different measures that are then used to check
the adherence to the practice (Lines 20 to 35 in Figure 1).

e One objective, based on one or several metrics and defining
operations to be calculated between them, as well as the
values that are considered appropriate for the practice (Line
45 in Figure 1).

e A computing period, which indicates how frequently the
practice adherence will be calculated (Line 47 in Figure 1).

e A computing scope, which defines the target of the metrics,
that is, if they should be computed for a whole team or each
member separately (Line 8 in Figure 1).

While the objective, the period and the scope are already included
in the iAgree specification and thus they are available out of the
box, it was required to extend the language with a DSL to define
metrics in the context of Agile/XP software development teams.

3A full sample of formal TPA can be found in https://isa-group.github.io/2019-05-
eagle-demo/

A. Guerrero, R. Fresno, A. Ju, P. Fernandez, C. Muller, A Ruiz-Cortes and A.Fox

id: TPA_Sample:

context:
validity:
initial: 2019-03-07
timeZone: America/Los—Angeles
definitions:
scopes:
development:
member :
name: Member; description: Member of a project;
project:
name: Project; description: Project;
computers:
pivotaltracker:
url: http://pt.computer.eagle.governify.io
terms:
metrics:
PERCENT_SUCCESSFULLY_DELIVERED_1P_STORIES :
computer:

name: /indicators/PERCENT_SUCCESSFULLY_DELIVERED_1P_STORIES
url: http://pt.computer.eagle.governify.io
measure :
computing :
element:
percentage :
transition:

actual

fromState: started; toState: delivered;
duration: < 4320 //3 days in minutes
filters :
type: feature
state: delivered , accepted, rejected
estimate: 1
scope :... //as definitions scopes
guarantees:
id: 1P_STORIES_SUCCESSFULLY_DELIVERED_ON_TIME
notes: 75% of 1—-point stories should take less than 3 days...
scope:
project:
name: Project; description: Project;
of :
scope: project: 2317518
objective: PERCENT_SUCCESSFULLY_DELIVERED_1P_STORIES > 75
window :
type: static; period: daily; initial: 2019-03-07

Figure 1: Excerpt of TPA in YAML syntax of iAgree language.

The DSL implemented define a metric definitions composed of
four different parameters:

e computing: this parameter indicates whether the metric
must be aggregated or not, to compute an actual value or
the maximum, minimum, etc. of a given period.

e element: this parameter specifies what property is relevant
to the metric calculation, such as the number of stories or
their estimation points. In case we require a computation of
a percentage we can refine the metric with the usage of the
percentage keyword that compute the number of elements
that pass a refined set of filters.

o filters: they define a series of restrictions that must be ful-
filled by a story in order to be taken into account for the
metric calculation, such as the type, the state or the duration
of the transition from one state to another.

o offset: an optional parameter that indicates that the metric
should be computed for a different period which is obtained
by adding or subtracting days to the given period.

2.2 Dashboard

In order to track a team’s adherence to the different practices, we
developed an interactive dashboard that is automatically generated

https://isa-group.github.io/2019-05-eagle-demo/
https://isa-group.github.io/2019-05-eagle-demo/

Eagle: A Team Practices Audit Framework for Agile Software Development ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Explanation ONE_STORY_AT_A_TIME - Only one story per person can be started at a time

e e e e Ie
@ 1w e e =
(TS PSP

RSB T™ RN TRTSRINTY
LSBT RICRTORT™
o e e o o

abril 19,2019

3716 3n9 32 325 3728

~ Member 1 = Mombar2 = Member 3 = Member 4 ~ Member 5 Member & Member 7

Figure 2: Dashboard screenshot representing a TP adherence for a team.

from the TPA* which both, team members and project managers 3.1 Settings

can use. Specifically, Figure 2 shows a screenshot of a fragment In this software engineering course, 120 students are divided into

> of the dashboard including a graph representing a specific TP 20 groups. Students work with a real customer on a web service

adherence in the team identified as "ONE_STORY_AT_A_TIME" that project over four 2-week iterations. Students are supposed to use

can be described in natural language as each member can only be Agile development methods.

working on one task at the same time®. In this case study, we focus on backlog delivery practices. Back-
The dashboard allows to select a period of time to analyze, for log and user stories are fundamental components in major Agile

instance, an iteration that was unsatisfactory in order to detect the methods, such as XP [3] and Scrum [9] to address the principles of

practices that where violated. In addition, an annotation over the fast delivery of stories and reasonable velocity 7. The TPAs in natu-

graph is possible to highlight persistent comments over the time ral language are given to students at the beginning of the second

line for further analysis. iteration. The Eagle system is open to students at the end of the
An explanation of each TP can be found in the right upper corner third iteration.

(blue button) of every graph, to allow the users to understand Each student is required to finish an optional self-assessment

what the graph is representing. The limit to fulfill or not the TP survey at the end of each iteration, in which they are asked to

is delimited by a red area. In addition, each graph is linked to a answer likert-scale questions on their Agile practices. Furthermore,

companion table above it with the fulfillment degree of TP’s for a survey focused on TPAs and Eagle is sent to students in the middle

each day; in case the objective is not fulfilled it is highlighted with of the forth iteration.

a red background and a green background otherwise. In case more

information is required, the users can obtain a list of evidences that 3.2 Findings

support that fulfillment degree. As an example in the TP shown in
the Figure 2, by clicking in any point of the graph, we will see the
list of active stories assigned to each member in that specific point
in time.

Student backlog delivery behaviors. Figure 3 shows that students
report better backlog delivery behaviors in iteration 3 and 4. As
Eagle is deployed in iteration 3 and 4, the result suggests that Eagle
may help students improve their self-perceived backlog delivery
behaviors.

3 CASE STUDY

We run a case study in a software engineering course at a University Adherence improvement. In spite the TPAs were known to stu-

of California, Berkeley. With this case study, we would like to dents during Iteration 2 and the dashboard itself at the end of
understand Iteration 3, the eagle system was monitoring data since the very

beginning. Figure 4 shows the degree of adherence to the practices
by aggregating the fulfillment of the TPs during the iteration by all
teams (depicted as the line in the top of the graph) and the improve-
We also collect feedback from students about TPAs and the system. ment from the previous iterations (depicted as the blue bars in the
bottom of the graph); as we can see there was an important increase
in iteration 2 when student had the explicit list of TP (though they

“based on the Grafana framework available at https://grafana.com/ were expressed in natural language) but there was a small reduction
%A live demo of the whole dashboard for a number of public projects is available at

https://isa-group.github.io/2019-05-eagle-demo/ -

©The formal TP description can be found in https://isa-group.github.io/2019-05-eagle- "The complete description of the TPA can be found in https://isa-group.github.io/2019-
demo/ 05-eagle-demo/

e Can TPAs change student backlog delivery behaviors?
e Can Eagle change student backlog delivery behaviors?

https://grafana.com/
https://isa-group.github.io/2019-05-eagle-demo/
https://isa-group.github.io/2019-05-eagle-demo/
https://isa-group.github.io/2019-05-eagle-demo/
https://isa-group.github.io/2019-05-eagle-demo/
https://isa-group.github.io/2019-05-eagle-demo/

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

j=d
k=)
X ¢
@
m 4 —— . ¢
0 0
2 0
0 . 0
1 2 3 4

lteration

Figure 3: Self-assessment results on backlog delivery prac-
tices.

during iteration 3 that could be caused by a fatigue phenomenon
from lazy adherence to the rules and the lack of observance feeling;
finally the highest adherence was observed in iteration 4 when
the dashboard was available to students as they have an explicit
measurement of their TP fulfillment.

Student attitude. 16 students respond to the voluntary survey
on TPAs and Eagle; 11 (69%) respondents agree or strongly agree
that TPAs and the Eagle system drive you to deliver features in a
way that is different from your previous course team projects. This
indicates that overall students agree that using TPAs and the Eagle
system change their backlog delivery behaviors. Furthermore, 10
(63%) respondents would like to use TPAs in the future and 9(56%)
would like to use the Eagle system. The results suggest that students
generally appreciate the values that TPAs and the Eagle system
bring to their team. In the qualitative feedback, students mention
that while TPAs set concrete requirements on student behaviors,
they are not strictly enforced (in terms of score implications). In
contrast, in other courses, rules are either strict and specific, or
general and lenient. In such a context, TPAs could have had a
stronger impact when they have a direct impact on their score.

4 RELATED WORK

To the best of our knowledge, currently no related tooling has been
proposed in the literature to provide insight about how closely
the teams are following customized team practices in Agile/XP
development. However, a number of related works can be found
[2,4,5,7,10] providing a set of software development practices that
could be defined as TPs in order to be measured and analyzed with
our proposed tool. Thus, Baltes et al. propose in [2] a theory describ-
ing software developers properties and practises that are distinctive
for experts in their field. For example, the concept of getting feed-
back from peers are remarked as an important factor and it could
be used as a metric in our TPs. Huijgens et al. provide in [4] metrics
with high predictive power towards a subset of lagging variables.
Thus, as part of their results, metrics like "planned stories completion
ratio", or "planned points completion ratio” should be defined as TPs
in our work because the authors provide them a high predictive

A. Guerrero, R. Fresno, A. Ju, P. Fernandez, C. Muller, A Ruiz-Cortes and A.Fox

100 7 81

68
75

50

25

-25
Iteration 2 Iteration 3 Iteration 4
Improvement Improvement Improvement

Figure 4: Improvement analysis amongst iterations.

power. Treude et al. in [10], and Meyer et al. in [7] conducted em-
pirical studies with 156 GitHub users and 379 software developers,
respectively. From their studies metrics emerged from both, (1) the
analysis for objective measures of development activity, and (2)
the improvement of the productivity through the development of
new tools and the sharing of best practices. Complementary, Eagle
could be extended in that direction to incorporate such a set of new
metrics. Finally, Kupiainen et al. in [5] establishes a motivational
ground for the Eagle system by providing a systematic literature
review analyzing why and how metrics are used by industrial agile
teams in order to infer enforcing process improvements.

In software engineering courses, there are some recent studies
on exploiting metrics and dashboards to provide fast feedback [1,
6]; Matthies et al. show in [6] how they use a metric dashboard,
ScrumLint, to provide fast feedback to students. Bai et al. use metrics
to deliver continuous feedback to students in a software engineering
course [1]. Compared with the previous studies, our work focuses
on backlog delivery behaviors. Furthermore, TPA (joint with the
underlying SLA model) provide a generalizable approach for metric
definitions, which makes Eagle also applicable to other learning
scenarios and have an easier integration with other tools.

5 CONCLUSIONS AND FUTURE WORK

The Eagle tool represent a fist attempt to create a framework to
audit the Agile software development teams by providing a mean
to express, monitor and visualize their Team Practices (TPs). We
leverage the pre-existing Service Level Agreement (SLA) manage-
ment platform Governify[8], and extend it with a DSL for Agile
software development metrics and an interactive dashboard. A case
study over 20 student teams in a software engineering course has
provided promising findings in terms of improved adherence to
audited practices and positive student self-evaluation. In this learn-
ing context, as future work we plan to extend the infrastructure
and incorporate other SLA elements such as the compensations by
defining scoring penalties or rewards in case of under-fulfilling or
over-fulfilling a given TP. From an industrial perspective, we plan to
validate the system in other scenarios such as software companies
and to mine interesting TPs from historic project databases.

Eagle: A Team Practices Audit Framework for Agile Software Development

ACKNOWLEDGMENTS

This work is partially supported by the European Commission
(FEDER), the Spanish Government under projects BELI (TIN2015-
70560-R) and HORATIO (RTI2018-101204-B-C21).

REFERENCES

[1] Xiaoying Bai, Mingjie Li, Dan Pei, Shanshan Li, and Deming Ye. 2018. Continuous

[2

3

—

]

delivery of personalized assessment and feedback in agile software engineering
projects. In 2018 IEEE/ACM 40th International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). IEEE, 58-67.
Sebastian Baltes and Stephan Diehl. 2018. Towards a Theory of Software De-
velopment Expertise. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2018). ACM, New York, NY, USA, 187-200.
https://doi.org/10.1145/3236024.3236061

Kent Beck and Erich Gamma. 2000. Extreme programming explained: embrace
change. addison-wesley professional.

Hennie Huijgens, Robert Lamping, Dick Stevens, Hartger Rothengatter, Georgios
Gousios, and Daniele Romano. 2017. Strong Agile Metrics: Mining Log Data
to Determine Predictive Power of Software Metrics for Continuous Delivery
Teams. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software

[10

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 866-871. https://doi.
org/10.1145/3106237.3117779

Eetu Kupiainen, Mika V. Mintyla, and Juha Itkonen. 2014. Why Are Industrial
Agile Teams Using Metrics and How Do They Use Them?. In Proceedings of the
5th International Workshop on Emerging Trends in Software Metrics (WETSoM
2014). ACM, New York, NY, USA, 23-29. https://doi.org/10.1145/2593868.2593873
Christoph Matthies, Thomas Kowark, Keven Richly, Matthias Uflacker, and Hasso
Plattner. 2016. How Surveys, Tutors and Software Help to Assess Scrum Adoption
in a Classroom Software Engineering Project. In 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C). IEEE, 313-322.

André N. Meyer, Thomas Fritz, Gail C. Murphy, and Thomas Zimmermann. 2014.
Software Developers’ Perceptions of Productivity. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE
2014). ACM, New York, NY, USA, 19-29. https://doi.org/10.1145/2635868.2635892
Carlos Miiller, Pablo Fernandez, Antonio M. Gutierrez, Octavio Martin-Diaz,
Manuel Resinas, and Antonio Ruiz-Cortés. 2018. Automated Validation of
Compensable SLAs. IEEE Transactions on Services Computing (2018). https:
//doi.org/10.1109/tsc.2018.2885766

Ken Schwaber and Mike Beedle. 2002. Agile software development with Scrum.
Vol. 1. Prentice Hall Upper Saddle River.

Christoph Treude, Fernando Figueira Filho, and Uira Kulesza. 2015. Summarizing
and Measuring Development Activity. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY,
USA, 625-636. https://doi.org/10.1145/2786805.2786827

https://doi.org/10.1145/3236024.3236061
https://doi.org/10.1145/3106237.3117779
https://doi.org/10.1145/3106237.3117779
https://doi.org/10.1145/2593868.2593873
https://doi.org/10.1145/2635868.2635892
https://doi.org/10.1109/tsc.2018.2885766
https://doi.org/10.1109/tsc.2018.2885766
https://doi.org/10.1145/2786805.2786827

	Abstract
	1 Introduction
	2 Eagle tool
	2.1 Modelling TPAs
	2.2 Dashboard

	3 Case study
	3.1 Settings
	3.2 Findings

	4 Related work
	5 Conclusions and Future Work
	Acknowledgments
	References

